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ABSTRACT

A series system for which only failed components are
replaced (or repaired) is considered. Nonfailed
components are in a "state-of-suspended animation"
while the system is down. The limiting average system
up time is computad for arbitrary failure and repair
distributions. The limiting distribution of system
up time, the number of failures of component
i (i = 1,2, ... , k) and the down time of component
i (i = 1,2, ., k) are calculated. The asymptotic
distribution of the cost of repair is also derived.
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AVAILABILITY THEORY FOR MULTICOMPONENT SYSTEMS

by

Richard E. Barlow and Frank Proschan

0. INTRODUCTION AND SUMLARY

In this paper we consider one of the most basic stochastic models in

reliability theory--namely the on-off process generated by failures and repairs

of components in a series system. A series system of k components operates if

and only if each of the k components operates. No component operates while

the system is down. Furthermore, only failed components are repaired and/or

replaced; repair or replacement takes a random time. Repaired components are

assumed to function like new components.

There is a large literature dealing with availability, the probability that

the system is functioning. However most papers assume special repair or failure

"distributions (or both). An example of this type is the paper by Gaver (1963)

and the paper by Obretenov, Dimitrov and Uzunov (1969). Many papers, including

those just named, are concerned with parallel systems with independently operating

components - that is nonfailed components are not usually in a state of

"suspended animation" during repair of a failed component, as in our model. The

reader may consult the IEEE Transactions on Reliability as well as the CoZloquium

on Reliability Theory held at Tihany, Hungary, 16-19 September, 1969. A model

more general than ours is treated by M. C. Botez (1969). However there is no

overlap with our results.

Let Xir be the duration of the rth functioning period of component i with

distribution Fi and mean pi 5 i = 1,2, ... , k (i.e., time to failure of rth

replacement for component i excluding system down times). Let Dir be the

duration of the repair time (or down time) for component i with distribution

G and mean v i = 1,2, ... , k . We assume that for i = 1, ... , k ,
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and D are mutually independent renewal processes.

A typical failure-repair history for such a series system might look as

follows:

..

I I *1
Up _

Down

X Xil+Dil X I+D XI+DiI+Djl Time

FIGURE 1: HISTORY OF A SERIES SYSTEM

In Figure 1, component i fails at time Xil and the system is down Dil

.hours. The system again operates from time X + D to time X + Di.

Component j fails at time Xjl + Dil and is replaced by time Xjl + Dil + Dl.

Let (t)= i if the system is down at time t due to the failure of

component i (i = 1,2, ... , k) . Let ý(t) = 0 if the system is operating at

time t . We are interested in the limiting probability, lim P[t(t) = i]

that the system is in state i . The limiting system availability, lim P[i(t) 0] ,

is of special interest.

Since only failed components are replaced with new or like-new components,

the age distribution of components in the system quickly becomes mathematically

very complicated. The process {•(t) ; t > 01 has in fact no regeneration points.

It is remarkable, however, that many quantities of interest are, in the limit,

mathematically very simple and depend only on component mean lives and component

mean repair times. The limiting average system availability, as we shall prove in

Section 2, is
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(0.f) lim P[R(u) 0]du= + j vj/i d1 n

while

t

1 C ~i def(0.2) 1rn P[1(u) i]du =- 10 i 12, kt- j 0 i , = 1,2 ... , k

These formulae are true for arbitrary failure and repair distributions. If

lim P[ý(t) = i] exists, then it is equal to . Although (0.1) is well known
t-Xi "
for exponential failure and exponential repair [cf. U.S. Naval Weapons Reliability

Engineering Handbook (1968)], a rigorous proof seems to be missing for the general

case. A heuristic proof for (0.1) was offered by Bazovsky, MacFarlane, and

Wunderman (1962).

Let Ni(t) be the number of replacements of component i in time t . We

show that

TrrE•i(t) _ 0

lim 0 " i 1,2, ... kt t i

This result can be used in determining spare parts requirements, since n 0 t/hi

will be, approximately, the number of components of type i required in [0,t] .

In Section 3 we prove the asymptotic normality of t-½[Ni(t) - tmll where
-i

mi = 1iT0 is, approximately, the mean time between failures of component i .

We also show that

t-ý[Nt) -tm-I]

is asymptotically normal, where

k• . i• (t) - • i t
i- 1

- :' ' - *' • IN. ... • •' • '" -" • .... • : ' • ,• •,'-• .• .• •¢ • ., . . . . -- -•



k
and m -1 m-1  A similar result ho.v" for U(t) , system up time in [O,t]i=l

1.

t [U(t) - t]

is asymptotically normas ;ua.i.s are used to calcula,.e repair and maintenance

costs in Section 4.

.1

, .3
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1. P,. IMINARIES

Assume that all random variables associated with the series system discussed

in the introduction are defined on a probability space (Q,A,P) . Recall that

and IDi are mutually independent renewal processes associated
r=1 r=l

with component i (i = 1,2, ... , k) . We suppress the argument of random

variables, X (w) evaluated at w S , except where useful in Section 2. Letir
n

Sn X and Ni(t) = sup {n I Sin t , where Si 0 - 0 . Then
r=l

[Ni(t) ; t > 0} is the reiewal counting process associated with Xir The
r=1.

following theorems are well known (cf. Feller, Vol. II, (1966) and Ross (1970)).

1.1 Theorem:

Let (Ni(t) ; t > 0} be a renewal counting process corresponding to

, where EXi " Then
Iril

N i(t) 1
lm -t a.s.,

and

EN. (t)
(1.2) lim I = 1 i

where a.s. means almost surely with respect to P.

We will need the following generalization of the asymptotic normality of the

renewal random variable, R (t) , in Section 3. Let iX be a sequence of
r=l

nonnegative random variables, not ;8wceasari7• independent or identically distributed,

with an associated counting process (N(t) ; t > 01 defined by



6

n
sup n X < t X A

r=lr
N(t) =

0 X > t•
1

The following theorem and its ccrollary can be pzoved by the argument in Feller,

Volume I, (1968), p. 321.

1.2 Theorem:

(1.3) (a 2n)-½ rl N(0,T)
r~

as n -co if and only if

(1.4) 2 3 -
(1.4) (a u n) [N(nt) - nTpl] -• N(0,t)

.where [ ] means greatest integer contained within the brackets.

1.3 Corollary:
S~2

If IXrj is a renewal process with EX = s and Var X a , thenr=l r r

both (1.3) and (1.4) hold.

Billingsley (1968), pp. 148-150, and Iglehart and Whitt (1969) generalize

Theorem 1.2 to Wiener processes on [0,1]

I

- • , i I • I • :•l ... I",' ': " " '•= =•"• ": • •" " • •: • •'• " .- ... .•, .... ... ,• .. .. ., .. . ... ...... .. .. • • .•, .•._ . • .• •,.•1 3



2. AVERAGE SYSTEM UP TIME: ALMOST SURE RESULTS

It will be useful to study the piucess {U(t) ; t > 0) where U(t) is

the system functioning time (or up time) in [O,t] Similarly, let D(t) be

the down time in [O,t] so that U(t) + D(t) = . Figure 2 is a very useful

representation of a series system failure history in terms of system up time,

u(t).

A
03

r4

_jl.DDS [Di2

0 Xil System Functioning Time, U(t)

4. X.
- x-- -- -----

J2

FIGURE 2

Let Ni) be the number of failures of component i in real time t .

Observe that

: •~(t) -- N iSUtW

x ki
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wbere N ; t > 0} is the renewal counting process associated with

j×iXr . However, N.(.) and U(t) are not independent, since in particularin 11

U(M) = t implies N.[U(t)] = 0 . (We assume that all components are new at
1

t = 0 for definiteness. However, the limiting results are true regardless of

the initial conditions,)

2.1 Lemma:

If 0 < V and 0 < v < c (i = 1,2, ... , k) , then

iI

Ni[U(tw) ,w]
(2.1) lim __ _ __to U (t ,w) )i

where we have included the argument w c Q to emphasize that all random variables

are defined on the same probability space (Q,A,P) .

A!
Proof:

Under the hypotheses U(t,w) -+ , almost surely as t -+ • . Since Ni(t,w)

and U(t,w) are defined on the same probability space, (1.1) implies (2.1).II 4

2.2 Theorem:

if 0 < and 0 < v < (i = 1,2, ... , k) , then
1 -i

(2.2) lim t = [ Ilef a.s.
t J=1 'J

Proof:

Note that

k Ni(t)l k Ni(t)
SD. <rD < ir

ri= r1l

.j
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The inequality results from the fact that the system may be down at time t

Since U(t) + D(t) L , ,

U(t) 1 1

t kD(t)N.(t)+U(t) k N lt Ni[U(t)]
+ ~1 DE + • ir U(t)

i=1 N (t) r=1t
i

Ni(t)

By the strong law, i D. vi as t-÷ . By Lemma 2.1,
Ni(t) r=1

Ni[U(t)]
11- as t CO Hence,

U(t) a.s. Pi

Si= i

The reverse inequalfty is proved similarly. I

2.3 Corollary:

Under the same conditions,

EU(t) -fi0 as t-'

t 0

Proof:

Since U(t) < 1 and Ui - i 0 , it follows by the Lebesgue dominatedt -- t a.s. 0

convergence theorem that

EU(t) "--Ot as t- .]

t 0
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2.4 Corollary:

Let )i(t) be the down time for component i in [O,t] . Then under

the same hypotheses,

Di(t) _ i

(2.3) li ais. 0"

Proof:

Note that

Ni(t0-1 Ni(t)

D D <t)ir- i - ir

r~1 r=l

so that

t -- i(t) r=l Ut) t

i5

Hence,

D.(t) vi
lim - < - _

t 0

by the strong law, Lemma 2.1 and Theorem 2.2.

The reverse inequality is proved similarly. j1

Of course, it also follows from Corollary 2.4 that

k vkli ra IT (t--) - W
t a~s. i l
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2.5 Corollary:

Under the same hypotheses,

N (t) T0
(2.4) lim - 1. i 1,2, ,- t a.=s. ...

t-"O t

Proof:

Ni(t) N [U(t)] U(t) _ 1

t U(t) t a.s.
"41

by Lemma 2.1 and Theorem 2.2.11

2.6 Corollary:

Under the same hypotheses,

(2.5) lrm =t 0

t-W tI

Proof:

N(t) Ni[U(t) ] Nit

t t - t

By the elementary renewal theorem, (1.2)

ENi(t) 1

tEIit

Also, EN (t) < - for all t . Hence, there exists M such that
ENi (t)

sp <M . The conclusion follows from Corollary 2.5 and the Lebesgue
tt

dominated convergence theorem. 11



Average Availability

A

We call T-1 P[R(t) = O]dt the average availability in [0,T] . It is a
0

well known property of stochastic processes that

T
(2.6) T-0 P[R(t) =0]dt = UT__T

0

an easy consequence of Fubini's Theorem. It follows from Corollary 2.3 that

T

(2.7)T-lim T-lfO P[C(t) =O]dt = w0

If lim P(t) 0] exists, then it can easily be shown using (2.7) that

(2.8) lim Pe[(t) 0] 0

The limit in (2.8) will not always exist under the hypotheses of Theorem 2.2.

Sufficient conditions for (2.8), for example, are F nonlattice and F

exponential (j # i)

Similarly, if P[E(t) i] exists, then

(2.9) lim PR(t) = -i

System Mean Time Between Failures

Each time the system is repaired, the time until next failure will of course

depend on the repair history of each component. However, the average of successive

up times will converge to a limit, say p . Likewise the average of successive

down times will converge to a limit, say v . To calculate these quantities, let

k
N(t) = be the number of system failures in [0,t] .

i=l1
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2.7 Theorem:

If 0 < P < and 0 < v < (i 1,2, ... , k) , then the limiting average

of system up times will be a.s.

1k
(2.1i0)

while the limiting average of system down times will be a.s.

k(2.11) V= V i u
i=l

Proof:

The average of system up times in fO,t] will be approximately U(t)/N(t)

(The error will go to 0 a.s. as t - , as in previous proofs.) Since by

Theorem 2.2, lim U(t)/t a Vs. 'O and by Corollary 2.5 lim at )ii'

at- t a.s. -i

it follows that

def 01a 0k 1

d= lim U(t)/N(t) as.
t-OCO i~s 1 i

Hence,

lim UOlt)/Nt) as.s i/ _i ,

The average of system down times in [O,t] will be approximately

k Ni(t)

il l Dir/(t)
-- lrl
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By Corollary 2.5 and the strong law, 4
4

k Ni(t) Ni(t)

~' D
- ' ir

k vi
k Vi def

a.s. i 1- i

Remark:

I /kIf failure distributions were exponential, then of course i - would

be the expected duration of a system up time each time it is up, independently

of system past history. It is interesting that in the limiting sense, the average

duration of a system up time is

1/

for arbitrary failure distributions.

For a one unit system with mean life i and mean repair time v ,the

limiting system fractional up time is

(2.12) uP(/0 + v)

For our series model, the limiting fractional system up time is, by Theorem 2.7,

(2.13) r,0= + ik v, v, Z -u~p+
IIkvi] +F ikv

where now p is defined by (2.10) and v by (2.11). From Theorem 2.7, we see

that (2.13) is the analogue of (2.12).
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3. ASYMPTOTIC DISTRIBUTIONS
k G

To obtain the asymptotic distribution of N , N(t) = N-(t) , and
Si~2 21

U(t) , we must also specify the variances a, = Var Xi and 'r Var D

3-1 '
(i 1,2, Q . Let m 1 ~iix, '.or I 1 1,2, ... , k As we shall show,

mi , is approximately the mean time between failures of component i . Let *

denote normed random variables. Although normed random variables will have

asymptotic mean 0 , the asymptotic variance is not necessarily 1. In particular,

let

(3.1) Mit = t it)- tm i.,]' it9
We first state our main results before presenting proofs.

3.1 Theorem:

If 0<•i 0< < < v , 0 < o 2 < 0 < T < for i = 1,2, ... , k

then

is asymptotically (t -• ') multivariate normal with aean vector 0 and variance- -

covariance matrix

iji

where

1 -1 2 2 -3 2 -1 2-2 22 ( #)i

(3.2) vj m alm1 o + 1 V s a 2 + -( , a )
I i o 0 =s s - i i l J ]
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2 -32

.5(3.3) -v 2  m 3w2

and

k
2 2 2 2 +-1 + 2 2 -3wi a ci + Pi+•

J=1 j j j 'i ,'i i

and

(3.4) c =1 + -1 0 + I •
ji jj , j=l

3.2 Corollary:

Under the conditions of Theorem 3.1,

t- vilNiWt) - tml]-
i!

is asymptotically (t - c) N(0,1)

3.3 Theorem:

Let N(t) = ( Nict) and m = • mi . Under the conditions of
i=l i-l

Theorem 3.1,

t--l[N(t) - tm-

is asymptotically (t - cc) N(0,1) , where

k3

(3.5) v 2 (rm- v) 2 2 1-3 +"

3.4 Theorem:

Let U(t) be the system up time in [O,t] . Under the conditions of

Theorem 3.1,
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t-½u-iCu(t) - t]

is asymptotically (t o) , N(O,1) where

(3.6) u2 ri0 i (i'i °i + i "

3.5 Corollary:

Let D(t) be the system down time in [O,t] so that U(t) + D(t) t

Under the conditions of Theorem 3.1

t u [D(t) - r (i- )t

and

+ v2 2 -3n-t
[t m [D (t) rt

are asymptotically (t - c) N(O,1) where Di(t) is the down time of component

i in [O,t]

Applications of these results to the problem of determining maintenance costs

are discussed in Section 4.

Proofs of Theorems:

For mathematical convenience, we will work with the random variable which

is the number of compZeted repairs of component i in [O,t] . We do this because

we want to assume that all c--',onents are new at t - 0 . A natural cycle, then,

ends with a completed repair. Asymptotically, the number of failures properly

normed will have the same distribution as the number of completed repairs

similarly normed. For this reason we use Ni(t) to mean the number of completed

repairs in [O,t] for the remainder of this section.
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n
Let in X and So= 0 The time to the first completed repair of
Le r=l 10

component i will then be

N (Xi)
Y =X + D 4 D

i i i s=1 js

where {N. (x);x > 0} is the renewal counting process associated with lXjrlrl

as in Section 1. Similarly, the time between the r - 1 and rth completed

repair will be

N1 (S i,r)

(3.7) Yir =xi + D + D
ji s=Nj (Sir l)+l Js

Let

n n Nj (S in)

(3.8) Zin= Yir s + D + D j
r=l r=l jVi r=l j

3.6 Lemma:

If 0 < P < and 0 < v < (1 1,2, ... , k) , then

-1 -1 def
lim n Zi P2 s Tr'~ m1lim i a.s. 1i 0 = 1

Proof:

i nn-1~ -in
By the strong law n Sin 1i and n • Dir v 1s . S~nce

r=1

> 0 S as n- , and since v > 0 N st) as tea.s.
Hence

--------------------
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N) ( D ][ ][- -1

(Sl Sn Jn a ..8 J •i

again by the strong law and (2.3). The conclusion of the lemma follows.II

The processes {Zin;n >_ } and {Ni(t);t > 0) are related by

max {n z <i t} Zil < t

(3.9) N(t) =t t0Zl > t.

Since the partial sum process {Zin;n > 1} and the counting process {Ni(t);t > 0}

are essentially inverses of each other, it will be sufficient to determine the

asymptotic normality of the partial sum process.

From (3.9) we observe that for fixed T > 0

Ni(nT)
-i -½ n (n)mi n [ir -mi

r=1
(3.10)

N1 iNTm i n [Y ir -m.] + m I n•
ril Ni (nT) +i

so that asymptotically

Ni(nTr)
IN (nO

(3.11) n½[nml - N ½ir - mi]
r=1

where - means asymptotic equivalent in distribution. On the other hand, it is

well known (Reiyi (1957)) that

Rl2

(3.12) n-½ N [Yir -mil
r=1 r-1
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N (nT)
since nI a. /ri by (2.4).

nT a. s. i

* def -

It will be useful to expand Zn n 1  [y -m as follows:inir mjr=l

in in rlir i

N (Sin) r Si

+ n (D -v ) + n ½ r v j(S in 11i
ji r=l Jii J' -j

+ n ( n-nuiijn L n

*S * 14Let Sin (S. - n .) and ci = 1 + I vjiUI. Then we can rewrite Z as

irn in 2.i

Sn

Z ciS + n I (D- vi)in in r=l

Nj (S in)

+n½ ~ ~ (D vv)n ,n-+( -[Nj (Sin)
Jji r=l Jr j joi "-

Also

Zin ciSin + n (Djr -v)
in J=l r=l 

"(3.13)n V[1.LILJ-nJI]

+ n J[Nj (n pi) n Pi ll ]

Note that the summands in (3.13) are now independent.
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3.7 Lemma:

* 22 k 2-1 22 -3
lim VarZ c + J+ i j

def 2WI

where c. = 1+ I v./Ij h
I j i

Proof:

Use representation (3.13) and the well-known result

Var ½[N½ 2 -

Var N(nt) - a•/Bj] V- T .I

We use (3.11) and (3.12) to write

(3.15) n½ [Ni (npi) -npjP -- S

Proof of Theorem 3.1:

From Theorem 1.2 and representation (3.13) it Is obvious that the marginal

random variables N*(t) are asymptotically N (O,wm-3) where w is given by

(3.14). Using (3.15) we see that

* - c - I Vj 11- 1 + n½ (Dir -
Zin ci in Jii j i [n~jiV1]J~ ~ vjr !

or

(3.16)Z in 0 Skin I V 11IS + n I(D -½j ) .()ii J=l ji[[ni•pi J=1 r=l r

S!9
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From representation (3.16) it is easy to see that aribtrary linear combinations

of the Z s's are asymptotically normal. It follows that N1 (t),N(t), ... , Nk(t)

is asymptotically multivariate normal.

It remains to compute the variance-covariance matrix. From Theorem 1.2 and

Lemma 3.7, it follows that

2 -3 2
vi =vi = m. wi

as given by (3.3).

II

To compute(to,(t)t)• for i j recall that by (3.15)

-* ;iz*
N.(nT)) -m z .

1mi J
[-M1I

Hence,

vi. = Coy N(nT),N.(nT = m m Cov Z Z

• [j n [fn-]
IM Li I J i

for 0 < T < I Using (3.16) we see that

k[n~cir10 -* 1 *k 1 k 0n AOs1

(3.17) Z - S-1 7 1 vssS + n-½ ' "D -v).

nT-mr s1 vOI ss r

It follows that for i ' J

A
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Coy V z

-i -li r a S[•.
-- •o-Var -kT: o •V ( 71' m

k2 -2 ) i~ +] k -1 2+7T V ar Su n'T0 + ITt

+ s- ,,~ 0s 0

I nT~i

Hence, letting I 1

k [ ,2 ,,-3 2 2 - ll

V..Mim [vi-202 - .-2 2 + To s s s + sJs

Proof of Theorem 3.3:

From the previous proof we know that

~* def n-(-1 k 1* -

Nn(n)0 n-[ N (nT) - rnm ] ~ _ miZ 0<t 1 •In J =1

From (3.17) we see that

-* -l k k*

N (nT) - -+ M n-•01 +m S
i- -1 r Qi- 0ni - -- Jii V

(3.18) L .

-m n (D v
1=1 r. r

(3.18) is clearly asymptotically normal with variance

IA
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2 -2 2-3 2 2-12om (Cm- lj + TjItJ]

J=1 L j) j

at T=1

Proof of Theorem 3.4:

By definition of the up time, U(t) , in [0,t]

Ni(t) Ni(t)
X x ir < V(t) < I X ir + X

r-1--- r-1 i,Ni (t)4-1

Since sup X• converges to 0 in probability, it follows that
C<1 i,Ni(tn)+l1

iS

[i (nT)+-

i * ~~~~def-½[in)[•~

Un(nT) = n [U(nT) - nrino] - -X+ Pii(nT)
dn -0 n Lr=1 ir M

for 0 < T < 1.

As in previous proofs

n-½i [ii(nT) - *

Hence

Un(nT) - S -

Using (3.17) we see that

[nTv~~i1k ~k 0
(nT)- k 1 1 . (D. -vn 0  Vj 1no 1jl 0D jr

nT-~--~'---- - ) -
0
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Clearly U (nT) is asymptotically normal with variance

Ik u 2 1 20 Ivj• 3 a 2 T 2

when - 1.11

I

i
I
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4. COST OF REPAIR

First suppose that component i costs di dollars to repair each time it

fails regardless of the time to complete repair. Then the cost accrued during

[O,t] is

k
Cl(t) = Z d Ni(t)

i=l

and the cost per unit of time is, in the limit,

Cl(t) k
(4.1) lim -t IT0 il dip i

ti4l

Applying the techniques used in the proof of Theorem 3.3, we can show that

k
(4.2) t (t) d pill N d62l)

where

+ •0 djml jl) •j

Alternatively, suppose that it costs di dollars per hour of down time for

2

component i . Now the total cost accrued during [O,t] becomes

k

12t 0 1 [dii(t)

il 1

22k

copoereD.t isNo the towntiaefo cost ponrent duing [O,t] .bTeoe

1k C t d!Dit
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C2 (t) k
(4.3) lim divi it• i

by (2.7).

4.1 Theorem:

Under the conditions of Theorem 3.1,

1 4ý(4.4) t" 2 M tr0  d N d0,a 2/

where

k

i2 - 2 -3 21 262 22 ?mi + imi iiJ i

where w 2 is given in Lema 3.7.

Proof:

k
2 01nI[c 2(n¶) - ntit0  dlv~y1 J

- iiink Nd(n-) k
Sd(D~ -v) + n vdj~j(nx) nnn-1]iu'1 r-l i-I

k nmi kn-' d i d(DVir i) - i nm j~ 1

i-l r-l iftl i[nTm

Obviously, the normed cost function Is asymptotically normal. Its variance is

easily seen to be (when T 1)

2 k -1T2 + V2mm3W2l .16 2 i•
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